Cs system. J. Chem. Theory. Comput. 2012, 8, 67787. 29. Nguyen, P.; Stock, G.; Mittag, E.; Hu, C.-K.; Li, M. Totally free power landscape and folding mechanism of a -hairpin in explicit water: A replica exchange molecular dynamics study. Proteins 2005, 61, 79508. 30. Okur, A.; Roe, D.R.; Cui, G.; Hornak, V.; Simmerling, C. Improving convergence of replica-exchange simulations via coupling to a high-temperature structure reservoir. J. Chem. Theory. Comput. 2007, 3, 55768. 31. Roitberg, A.E.; Okur, A.; Simmerling, C. Coupling of replica exchange simulations to a non-boltzmann structure reservoir. J. Phys. Chem. B 2007, 111, 2415418. 32. Schlick, T. Molecular dynamics-based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biol. Rep. 2009, 1, doi:ten.3410/B1-51. 33. Meli, M.; Morra, G.; Colombo, G. Investigating the mechanism of peptide aggregation: Insights from mixed monte carlo-molecular dynamics simulations. Biophys. J. 2008, 94, 4414426. 34. De Mori, G.M.S.; Micheletti, C.; Colombo, G. All-atom folding simulations on the villin headpiece from stochastically chosen coarse-grained structures. J. Phys. Chem. B 2004, 108, 122672270. 35. Colombo, G.; Micheletti, C. Protein folding simulations: combining coarse-grained models and all-atom molecular dynamics. Theor. Chem. Acc. 2006, 116, 756. 36. Thorpe, I.F.; Zhou, J.; Voth, G.A. Peptide folding applying multiscale coarse-grained models. J. Phys. Chem. B 2008, 112, 130793090.Int. J. Mol. Sci. 2013,37. Chang, C.-E.A.; Trylska, J.; Tozzini, V.; Andrew Mccammon, J. Binding pathways of ligands to HIV-1 Protease: Coarse-grained and atomistic simulations. Chem. Biol. Drug Des. 2007, 69, 53. 38. Very best, R.B.; Mittal, J. Free-energy landscape with the GB1 hairpin in all-atom explicit solvent simulations with various force fields: Similarities and differences. Proteins 2011, 79, 1318328. 39. Kolinski, A.; Ilkowski, B.; Skolnick, J. Dynamics and thermodynamics of beta-hairpin assembly: Insights from a variety of simulation strategies. Biophys. J. 1999, 77, 2942952. 40. Garc , A.; Sanbonmatsu, K. Exploring the power landscape ofa hairpin in explicit solvent. Proteins 2001, 42, 34554.Sirukumab 41.β-Amyloid (1-40) (TFA) Lwin, T.PMID:24360118 Z.; Luo, R. Force field influences in -hairpin folding simulations. Protein Sci. 2006, 15, 2642655. 42. Shao, Q.; Yang, L.; Gao, Y.Q. Structure modify of beta-hairpin induced by turn optimization: An enhanced sampling molecular dynamics simulation study. J. Chem. Phys. 2011, 135, 23510435110. 43. Bhattacharya, A.; Finest, R.B.; Mittal, J. Smoothing of your GB1 hairpin folding landscape by interfacial confinement. Biophys. J. 2012, 103, 59600. 44. Cao, Z.; Wang, J. A comparative study of two unique force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations. J. Biomol. Struct. Dyn. 2010, 27, 65161. 45. Blanco, F.; Rivas, G.; Serrano, L. A quick linear peptide that folds into a native steady -hairpin in aqueous answer. Nat. Struct. Mol. Biol. 1994, 1, 58490. 46. Du, D.; Zhu, Y.; Huang, C.-Y.; Gai, F. Understanding the key variables that handle the rate of beta-hairpin folding. Proc. Natl. Acad. Sci. USA 2004, 101, 159155920. 47. Lewandowska, A.; Oldziej, S.; Liwo, A.; Scheraga, H.A. Mechanism of formation with the C-terminal beta-hairpin with the B3 domain of your immunoglobulin-binding protein G from Streptococcus. IV. Implication for the mechanism of folding in the parent protein. Biopolymers 2010, 93, 46980. 48. Skwierawska,.