2004). 7. Cacalano, G. et al. GFRalpha1 is an critical receptor element for
2004). 7. Cacalano, G. et al. GFRalpha1 is an essential receptor element for GDNF in the developing nervous technique and kidney. Neuron 21, 532 (1998). 8. Sauka-Spengler, T. Barembaum, M. Gain- and loss-of-function approaches within the chick embryo. Methods Cell Biol. 87, 23756 (2008). 9. Goldstein, A. M., Brewer, K. C., Doyle, A. M., Nagy, N. Roberts, D. J. BMP signaling is necessary for neural crest cell migration and ganglion formation inside the enteric nervous technique. Mech. Dev. 122, 82133 (2005). 10. Okamura, Y. Saga, Y. Notch signaling is necessary for the upkeep of enteric neural crest progenitors. Development 135, 3555565 (2008). 11. Holzer, P. Opioid receptors inside the gastrointestinal tract. Regul. Pept. 155, 117 (2009). 12. Sanger, G. J. Tuladhar, B. R. The role of endogenous opioids inside the control of gastrointestinal motility: predictions from in vitro modelling. Neurogastroenterol. Motil. 16 Suppl 2, 385 (2004). 13. Kromer, W. Endogenous and exogenous opioids in the control of gastrointestinal motility and secretion. Pharmacol. Rev. 40, 12162 (1988). 14. Holzer, P. Opioids and opioid receptors inside the enteric nervous method: from a problem in opioid analgesia to a attainable new prokinetic therapy in humans. Neurosci. Lett. 361, 19295 (2004). 15. Baldi, F., Bianco, M. A., Nardone, G., Pilotto, A. Zamparo, E. Focus on acute diarrhoeal illness. Planet J. Gastroenterol. 15, CYP1 Storage & Stability 3341348 (2009). 16. Wood, J. D. Galligan, J. J. Function of opioids within the enteric nervous technique. Neurogastroenterol. Motil. 16 Suppl 2, 178 (2004). 17. De Schepper, H. U., Cremonini, F., Park, M. I. Camilleri, M. Opioids and the gut: pharmacology and present clinical knowledge. Neurogastroenterol. Motil. 16, 38394 (2004). 18. Pasternak, G. W. Pharmacological HSF1 Purity & Documentation mechanisms of opioid analgesics. Clin. Neuropharmacol. 16, 18 (1993). 19. Galligan, J. J. Pharmacology of synaptic transmission inside the enteric nervous system. Curr. Opin. Pharmacol. two, 62329 (2002). 20. Galligan, J. J., LePard, K. J., Schneider, D. A. Zhou, X. Several mechanisms of rapid excitatory synaptic transmission within the enteric nervous method. J. Auton. Nerv. Syst. 81, 9703 (2000). 21. Harrington, A. M., Hutson, J. M. Southwell, B. R. Cholinergic neurotransmission and muscarinic receptors inside the enteric nervous system. Prog. Histochem. Cytochem. 44, 17302 (2010). 22. Schneider, D. A. Galligan, J. J. Presynaptic nicotinic acetylcholine receptors inside the myenteric plexus of guinea pig intestine. Am. J. Physiol Gastrointest. Liver Physiol 279, G528 535 (2000). 23. Holmberg, A., Schwerte, T., Pelster, B. Holmgren, S. Ontogeny in the gut motility control method in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 207, 4085094 (2004). 24. Holmberg, A., Olsson, C. Hennig, G. W. TTX-sensitive and TTX-insensitive control of spontaneous gut motility within the developing zebrafish (Danio rerio) larvae. J. Exp. Biol. 210, 1084091 (2007). 25. Shepherd, I. Eisen, J. Improvement of the zebrafish enteric nervous program. Techniques Cell Biol. 101, 14360 (2011). 26. Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K. Pack, M. Intestinal development and differentiation in zebrafish. Mech. Dev. 122, 15773 (2005). 27. Ng, A. N. et al. Formation from the digestive method in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 11435 (2005). 28. Kuhlman, J. Eisen, J. S. Genetic screen for mutations affecting development and function from the enteric nervous program. Dev. Dyn. 236, 11827 (2.